In class problem:

Calculate velocity of component 1 at z = 0 and z = 1

$$n_1 = \frac{D\overline{c}}{l} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)$$

$$\frac{\overline{c} - c_1}{\overline{c} - c_1^0} = \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0}\right)^{\frac{Z}{l}}$$

$$c_1^0 = 0.02 \text{ mole/liter}$$
 $c_1^l = 0.1c_1^0$

$$c_1^l = 0.1c_1^0$$

$$D = 1 \text{ cm}^2 \text{ s}^{-1}$$
 $l = 10 \text{ cm}$

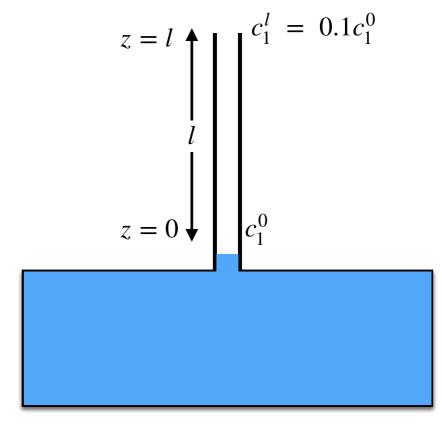
$$l = 10 \text{ cm}$$

$$\bar{V}_1 = \bar{V}_2 = \frac{1}{\bar{c}}$$

 $\overline{V}_1 = \overline{V}_2 = \frac{1}{\overline{C}}$ is constant (22.4 liter/mole) in vapor phase at 1 bar.

$$\bar{c} = 0.045$$
 mole/liter

velocity of component
$$1 = v_1 = \frac{n_1}{c_1}$$


$$n_1 = \frac{10^{-4} * 0.045 * 1000}{0.1} \ln \left(\frac{0.045 - 0.002}{0.045 - 0.02} \right)$$

$$= 2.44 * 10^{-2} \text{ mole m}^{-2} \text{ s}^{-1}$$

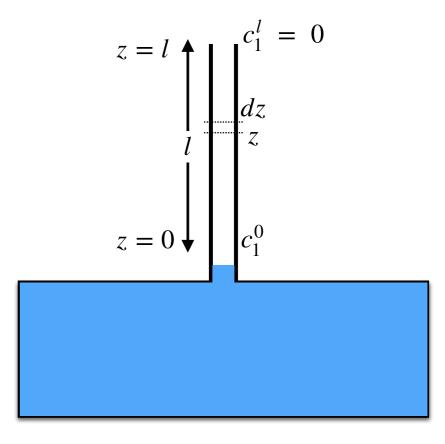
$$v_1^0 = \frac{2.44 * 10^{-2}}{0.02 * 1000} = 1.22 * 10^{-3} \ m \ s^{-1}$$

$$v_1^l = \frac{2.44 * 10^{-2}}{0.002 * 1000} = 1.22 * 10^{-2} \ m \ s^{-1}$$

Liquid evaporation through a capillary

Exercise problem #1

Compare total flux when you consider convection and when you neglect convection (use thin film result without convection)


Consider two cases (stagnant air):

Benzene evaporating at 6 °C and 78 °C, Total pressure = 1 atm

$$c_1^l = 0$$
 D = 0.01 cm²/s; $l = 1$ m

$$\bar{c} = \frac{P}{RT} \qquad c_1^0 = \frac{P^{sat}}{RT}$$

T (°C)	P ^{sat} (atm)
6	0.049
78	0.934

Liquid evaporation through a capillary

T (°C)
 Psat
 $P \ln \left(\frac{P}{P - P^{sat}} \right)$ % Convection

 6
 0.049

 78
 0.934

Solution to exercise problem #1

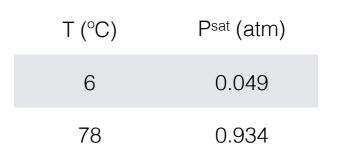
Compare total flux when you consider convection and when you neglect convection (use thin film result without convection)

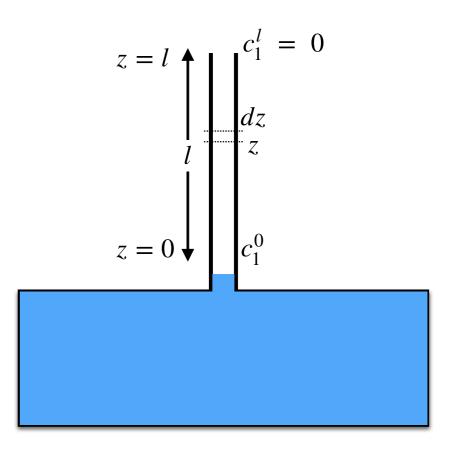
Consider two cases (stagnant air):

Benzene evaporating at 6 °C and 78 °C, Total pressure = 1 atm

$$c_1^l = 0$$
 D = 0.01 cm²/s; $l = 1$ m

$$\bar{c} = \frac{P}{RT} \qquad c_1^0 = \frac{P^{sat}}{RT}$$

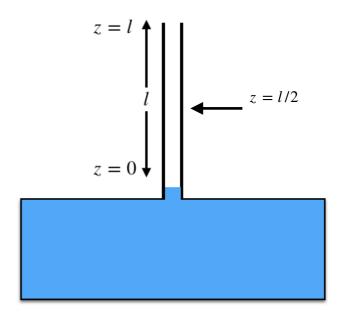

Considering convection


$$n_1 = \frac{D\bar{c}}{l} \ln \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right) = \frac{D\bar{c}}{l} \ln \left(\frac{\bar{c}}{\bar{c} - c_1^0} \right) = \frac{D}{RTl} P \ln \left(\frac{P}{P - P^{sat}} \right)$$

Neglecting convection

$$j_1 = \frac{D}{l}(c_1^0 - c_1^l) = \frac{D}{l}(c_1^0) = \frac{D}{RTl}(P^{sat})$$

T (°C)	Psat	$P\ln\!\left(\frac{P}{P-P^{sat}}\right)$	% Convection
6	0.049	0.050	2.454
78	0.934	2.718	65.638


Liquid evaporation through a capillary

Exercise problem #2

We said the air was stagnant, can you calculate the diffusive and convective flux of air?

$$v_2 = 0$$
 $\Rightarrow n_2 = c_2 v_2 = 0$
$$n_2 = j_2 + c_2 v^v \qquad \Rightarrow j_2 = -c_2 v^v$$

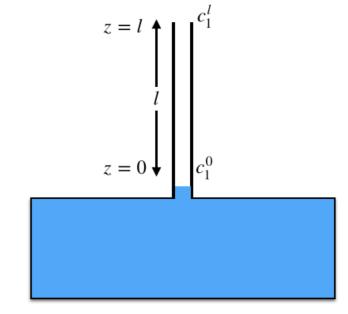
Liquid evaporation through a capillary

Average velocity of volume = v^{v}

Solution to exercise problem #2

We said the air was stagnant, can you calculate the diffusive and convective flux of air?

$$v_2 = 0$$
 $\Rightarrow n_2 = c_2 v_2 = 0$
$$n_2 = j_2 + c_2 v^{\nu}$$
 $\Rightarrow j_2 = -c_2 v^{\nu}$


Convective and diffusive flux of air will counter each other

Convective flux

$$c_{2}v^{v} = c_{2}\overline{V}_{1}n_{1} = \frac{c_{2}}{\overline{c}}n_{1} \approx y_{2}n_{1}$$

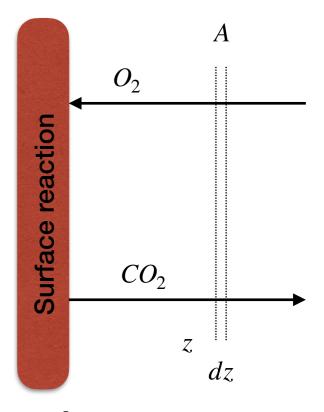
$$\frac{\overline{c} - c_{1}}{\overline{c} - c_{1}^{0}} = \left(\frac{\overline{c} - c_{1}^{l}}{\overline{c} - c_{1}^{0}}\right)^{\frac{z}{l}} \Rightarrow \frac{c_{2}}{c_{2}^{0}} = \left(\frac{c_{2}^{l}}{c_{2}^{0}}\right)^{\frac{z}{l}}$$

$$n_{1} = \frac{D\overline{c}}{l} \ln\left(\frac{\overline{c} - c_{1}^{l}}{\overline{c} - c_{1}^{0}}\right) = \frac{D\overline{c}}{l} \ln\left(\frac{c_{2}^{l}}{c_{2}^{0}}\right) > 1$$

Liquid evaporation through a capillary

Convective flux of air goes upwards

Diffusive flux of air goes downwards



Exercise problem #3

$$C + O_2 \rightarrow CO_2$$

Calculate concentration profile of O₂

Calculate velocity of CO_2 at z = L

$$z = 0$$

$$c_1^0 = c_1^L/10$$

$$z = L$$

$$C_{O_2} = c_1^L$$

$$C_{CO_2} = c_2^L$$

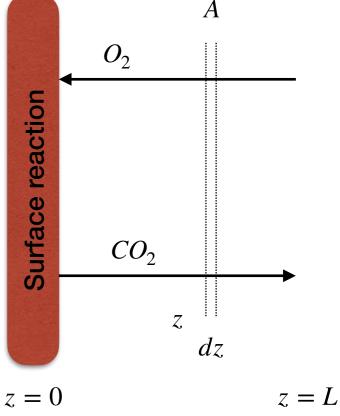
$$C_{CO_2} = c_2^l$$

Solution to exercise problem #3

$$C + O_2 \rightarrow CO_2$$

Calculate concentration profile of O_2

Calculate velocity of CO_2 at z = L


 n_1 is constant

 n_2 is constant

Let's look at the boundary; z = 0

$$n_2 = -n_1$$

$$n = n_1 + n_2 = 0 = cv \qquad \Rightarrow v = 0$$

$$c_1^0 = c_1^L/10$$

$$C_{O_2} = c_1^L$$

$$C_{CO_2} = c_2^L$$

We can use mole average velocity because we are dealing with gases

$$v = y_1 v_1 + y_2 v_2$$

$$v = y_1 v_1 + y_2 v_2 \qquad n_1 = -Dc \nabla y_1 + c_1 v$$

$$\Rightarrow n_1 = j_1 = -Dc \nabla y_1$$

 \Rightarrow $n_1 = j_1 = -Dc \nabla y_1$ Convective part is zero

Linear concentration profile for both O₂ and CO₂

$$j_1 = -\frac{9D}{10L}c_1^L$$

$$j_2 = -j_1$$

$$v_2 = j_2/c_2 = \frac{9D}{10L} \frac{c_1^L}{c_2^L}$$